Department of Pediatrics, University of Toronto
It is safe to assume that everybody knows (of) Dr. Minassian so he doesn’t need a long introduction. I would just say that he is a professor in the Department of Pediatrics at University of Toronto and a neurologist at The Hospital for Sick Children. His lab has discovered the genes responsible for Lafora disease, EPM2A encoding laforin and EPM2B, encoding malin, and hypothesized that they have a crucial role in glycogen metabolism. He is a strong proponent of the theory that the formation of Lafora bodies (LB) from poorly branched glycogen (polyglucosan chains) is the main cause of the Lafora disease. His lab showed in two seminal papers that mice with either Lafora disease mutations and mutations that reduce the glycogen production indeed did not develop the disease. They followed these mice well into old age, over two years, and they remain absolutely healthy! Moreover, this path of attacking the disease has been confirmed by two other labs, lead by Dr. DePaoli-‐Roach and Dr. Guinovart (more on that later). This independent confirmation will be extremely important when we will have to get approval for human tests. The crucial insight from these studies is that reducing glycogen production by 30-‐50% prevents the formation of LB and most importantly prevents the disease from developing. To reduce the production of glycogen three targets have been identified: the primer for the glycogen molecule, glycogenin (GYG), the protein targeting to glycogen (PTG) that activates glycogen synthase, and glycogen synthase (GS) itself, the enzyme that adds glucose molecules to glycogen.
Without getting into technical details, there are three stages in the production of an enzyme or protein: Thus, there are three levels where one can interfere, and all 3 are active research areas in Dr. Minassian’s lab.
Gene-RNA-Protein
Gene level: CRISPR is the newest technique in gene manipulation inspired by bacterial defense against viruses. It was developed at MIT by Dr. Feng Zhang and is a hot commodity. As of now it cannot be used to repair genes, just to silence them. You can imagine CRISPR as a very precise pair of scissors that can be targeted to a specific gene in a cell, making it inactive. Dr. Minassian roached Dr. Zhang last fall and initiated a research project for Lafora targeted CRISPR. Dr. Zhang delivered recently the CRISPRs against GS, PTG, and GYG with more than 50% efficiency! The next step is to test them in cell cultures and in mice, by employing an effective delivery method.
Through another collaborator, Dr. Brian Kaspar from Ohio State University, Dr. M. has access to a new adeno-‐associated virus called AAV9 that has very good attributes for gene therapy: it can cross the blood brain barrier (BBB); can populate large percentage of the brain without generating a negative reaction; does not integrate in the genome (no risk of complications due to altered DNA); stays active for long periods of times; is large enough to host CRISPRs. Dr.Kaspar has shown good results using AAV9 in mice with Amyotrophic Lateral Sclerosis (ALS). Dr. Minassian has experiments running using AAV9 and CRISPR in cell cultures and soon in mice. He is very excited and optimistic about these experiments.
Also at the gene level, AAV9 is employed to transport normal EPM2A and EPM2B genes in mice with LD. The virus will activate the genes inside the cell producing the missing laforin and malin protein and restoring their functionality in the glycogen metabolism. If successful this can be an effective cure for LD!
RNA level: Dr. Minassian mentioned his collaboration with ISIS Pharmaceuticals, which specializes in anti-‐sense drugs that bind to the mRNA produced by that, effectively turning that gene “off”. He was excited to report that they delivered Anti-‐Sense Oligonucleotides (ASOs) that bring GS, PTG, and GYG down by 50%, the target he requested. ISIS has tested these in cell cultures and in normal mice. Dr. M. was not allowed to show the actual results due to a non-‐ disclosure agreement (NDA), but he has already injected ASOs in the brains of Lafora mice. The drawback of ASOs is that they cannot cross the BBB. Thus, they need to be injected in the brain ventricles or by a spinal tap t 2-‐3 months interval. A note on ISIS Pharmaceuticals: Currently has one approved drug (KYNAMRO for hypercholesterolemia), and various compounds in clinical trials for a variety of diseases such as Crohn’s disease, psoriasis, asthma, and cancer. They are collaborating with Biogen ($100 millions project) to develop antisense drugs for neurological disorders, which will advance the brain delivery methods for ASOs.
Protein Level: From Dr. Minassian updates we all know that his lab and collaborators are involved in a massive automatic screening of small molecules that can cross the BBB (more than 190,000) find GS inhibitors. In addition, Dr. M. has entered in an agreement with an unnamed pharmaceutical company to share 5,000 chemical compounds that, in their tests, were showing GS reduction. Unofficially, because he is restricted by NDA to show the actual results, he shared with us that 40 of those compounds indeed reduced the GS in the test assays! While he called this “fantastic progress” he was quick to caution that it does not mean automatically that those compounds are safe to be use in patients. Indeed he does not even know what those compounds are since they are identified just by a code. The company has the option to pursue the treatment with Dr. M. or they might just disclose to him what their chemical composition is. Right now Dr. M. is already embarked in the next step, determining the dosage required to produce 50% suppression of GS in cell cultures. After that of course they will be tested on mice for safety and effectiveness. Dr. Minassian is optimistic about this treatment avenue as the first line of attack on the disease. In his opinion this would allow the fastest translation to human tests.
Dissolving Lafora Bodies: Most of the researchers now agree that poorly branched glycogen accumulates into insoluble polyglucosan chains that form the LB that in turn produce neuronal degeneration. The research projects enumerated above all aim to reduce the production of glycogen in the brain and stop LB formation, halting the disease. Yet, to effectively reverse the disease, the Lafora bodies have to be removed. It was hypothesized at the Workshop that the cells might have cleaning mechanisms that are simply overwhelmed in LD. If the glycogen production is reduced they might slowly clean up the LB. Nevertheless, Dr. Minassian’s lab works on research to dissolve LB using amylase. The challenge is to deliver functional amylase to the brain. Two vehicles are now under investigation. AAV9 loaded with amylase was already injected in mice and the results are pending. The second involves CRM197 a mutated, non-‐toxic diphtheria toxin (DT) that is supplemented with amylase. The diphtheria toxin crosses the BBB and infects the neurons. It is hoped that this mutated version will safely transport amylase into the brain.
Lafora disease (LD) is caused by mutations in two genes (EPM2A and EPM2B) that in yet incompletely understood ways regulate glycogen metabolism. The AAV9 virus is a natural dweller of the human brain, has no difficulty crossing the blood-brain carrier, is non-immunogenic, and has a plasmid which neither integrates the human genome, nor is silenced. We are presently testing the replacement of Epm2a and Epm2b in LD mice to rescue their phenotypes. At the same time, it is now clear that Lafora bodies are the pathogenic insult to the brain, that preventing Lafora body formation prevents the disease, and that Lafora body formation can be prevented by reducing glycogen synthesis. We are using AAV9 to introduce CRISPR/Cas9 nucleases targeted against glycogen synthase, PTG, and glycogenin, to stop brain glycogen and thus Lafora body formation. Towards the same goal, we are testing antisense oligonucleotides and triple helix forming oligonucleotides against the same three targets. Again towards the same end, we are screening focused libraries of potential glycogen synthesis inhibiting small molecules, as well as large unselected libraries, in order to identify glycogen synthesis inhibitor compounds. Finally, we are working towards introducing amylase, the only known enzyme that can digest Lafora bodies, into the murine brain through inactivated diphtheria toxin in one set of experiments, and carried by AAV9 in another. We hope that one, likely several, of the above approaches will progress towards a therapy for LD.